Parallel MATLAB on HPC

Avalon Johnson, Jimi Chui, Cesar Sul and Erin Shaw

USC Center for High-Performance Computing (HPC)
HPC Research and Education Facilitation

USC HPC

- Foundation for computational research at USC
 - Shared resource that is freely available to faculty, researchers and graduate students
 - World class supercomputing center
 - Currently ranked 12th fastest academic cluster

- Research & Education Facilitation
 - Drop-in to office hours or request a consultation
 - Attend a new user meeting or participate in a workshop
 - See https://hpc.usc.edu/education
 - See https://hpc.usc.edu/officehours
 - Email hpc@usc.edu
Outline

- **Introduction**
 - Prerequisites, setup workspace and launch MATLAB
 - Introduction to parallel MATLAB
- **Run MATLAB on single node w/ Parallel Computing Toolbox (PCT)**
 - Using graphical user interface (GUI)
 - Using command line interface (CLI)
 - Using CLI with batch parallel job execution
- **Run MATLAB on multiple nodes w/ Distributed Computing Server (DCS)**
 - Using command line interface (CLI)
- **Beyond parfor**
 - labIndex, Composite, and Broadcast&Receive
 - Practice using PBS
Prerequisites

- You will need *X11 Display Forwarding* to use the GUI
 - On Windows: Set ‘Enable X11 forwarding’ on your client (this is usually the default)
 - On Macs: Download and install Xquartz (www.xquartz.org)

- Login

  ```
  $ ssh -X {USCNetId}@hpc-login3.usc.edu
  ```

- Run ‘xeyes’ program to verify that display is working

  ```
  $ xeyes #now move cursor
  $ ^C #control-c to quit
  ```

Workspace setup

- Always work in your project directory!

  ```
  $ cd /home/rcf-proj/{project}/{user}
  ```

- Create a matlab workshop directory & copy workshop files to it

  ```
  $ mkdir matlab
  $ cd matlab
  $ cp /home/rcf-proj/workshop/matlab/* .
  ```

- You should now have the following files

  ```
  $ ls
  broadcastReceive.m EstimatePi.m jobScript.m labIndex.m submit.pbs submitTasks.m
  ```
Request an interactive compute node

$ qsub -I -l walltime=02:00:00 -l procs=8 -l software=MPCT+1
 -A workshop -l 'advres=HPCWorkshop.xx'

- l procs=8
 Use "procs" instead of typical "nodes=x:ppn=x"
 Distributes MATLAB processes across nodes most efficiently
- l software=MPCT+1
 Checkout 1 MATLAB PCT license for interactive application (client)
 Each core needs a license – MATLAB will request more licenses per our configuration
- l advres=HPCWorkshop.xx -A workshop
 Use nodes reserved in advance for this workshop
 Omit these lines after workshop

NOTE: When you run real jobs, if you have access to a condo queue, be sure to include
the –q <queue_name> option
Launch MATLAB in second window

This is your original hpc-login shell
When ‘qsub’ succeeds, a compute node shell will open in this window
Do not run MATLAB with GUI in this shell, it will be very slow; run in new terminal window instead
Use this window to edit your program and monitor your job

Open a second terminal window and login to head node (with –X)
$ ssh –X hpc-login3.usc.edu
Then login to compute node and run MATLAB from here
$ ssh –X hpcxxxx
$ source /usr/usc/matlab/R2016a/setup.sh
$ matlab

Outline

- Introduction
 - Prerequisites, setup workspace and launch MATLAB
 - Introduction to parallel MATLAB
- Run MATLAB on single node w/ Parallel Computing Toolbox (PCT)
 - Using graphical user interface (GUI)
 - Using command line interface (CLI)
 - Using CLI with batch parallel job execution
- Run MATLAB on multiple nodes w/ Distributed Computing Server (DCS)
 - Using command line interface (CLI)
- Beyond parfor
 - labIndex, Composite, and Broadcast&Receive
 - Practice using PBS
How MATLAB supports parallelization

- **Cluster objects**
 - `parallel.cluster.Local` (interact with cluster on local machine)
 - `parallel.cluster.Torque` (interact with cluster running Torque)
 - `parallel.cluster.Mpiexec` (interact with cluster using mpiexec)

- **Parallel Computing Toolbox (USC licensed)**
 - `parpool` + `parfor`

- **Distributed Computing Server (USC licensed)**
 - `batch parfor`, `spmd` (single program, multiple data) jobs,
 `spmd` MPI communication

MATLAB’s parallel machinery

![Diagram showing the flow of jobs from client to worker nodes through cluster nodes and job statuses (Pending, Submitted, Queued, Running, Finished).]
MATLAB program: EstimatePi.m

```matlab
% Calculate the value of Pi using a Monte Carlo simulation
max=1e9;
tic;
n=0;
parfor i = 1:max
    x=rand;
y=rand;
    if (x^2 + y^2 < 1.0)
        n=n+1;
    end
end
elapsedTime = toc;
pi = (4.0 * n / max);
```

MATLAB’s parfor loop

The Mechanics of parfor Loops
Outline

- Introduction
 - Prerequisites, setup workspace and launch MATLAB
 - Introduction to parallel MATLAB
- Run MATLAB on single node w/ Parallel Computing Toolbox (PCT)
 - Using graphical user interface (GUI)
 - Using command line interface (CLI)
 - Using CLI with batch parallel job execution
- Run MATLAB on multiple nodes w/ Distributed Computing Server (DCS)
 - Using command line interface (CLI)
- Beyond parfor
 - labIndex, Composite, and Broadcast&Receive
 - Practice using PBS

Run on single node with PCT (GUI)
MATLAB’s Parallel Computing Toolbox (MPCT)

- In second terminal window
  ```
  $ ssh -X hpcxxxx
  $ source /usr/usc/matlab/R2016a/setup.sh #add matlab to path
  $ matlab
  ```
- There are three steps for configuring MATLAB’s PCT
 1. Set cluster profile (SingleNodeProfile_GUI)

 Tell MATLAB which PBS resources are available
 2. Set parallel pool preferences

 Tell MATLAB which cluster profile and how many workers to use for this run
 3. Start parallel pool and execute program
- When MATLAB ready, set path to your matlab directory
1. Set cluster profile (GUI)
Set “Description” (optional)
Set “NumWorkers”
#workers = #cores (procs)
Set “JobStorageLocation”
where results will go
Close window

2. Set parallel pool preferences (GUI)

- Access Preferences panel from top tab or lower-left button
- Set “Default Cluster”
 select a profile to use
- Set “Preferred number of workers in a parallel pool”
 #workers = #cores – 1 (i.e., leave one core for MATLAB)
- Close window
3. Start parallel pool (GUI)

- Select “Start parallel pool”
 - Parallel bars will blink until ready
 - Hover over for run status
- In “Current Folder” window
 - Select script (estimatePI.m)
 - Opens in Editor window
- Run program (green triangle)
 - Type $ top to see running processes
- Exit MATLAB

Outline

- Introduction
 - Prerequisites, setup workspace and launch MATLAB
 - Introduction to parallel MATLAB
- Run MATLAB on single node w/ Parallel Computing Toolbox (PCT)
 - Using graphical user interface (GUI)
 - Using command line interface (CLI)
 - Using CLI with batch parallel job execution
- Run MATLAB on multiple nodes w/ Distributed Computing Server (DCS)
 - Using command line interface (CLI)
- Beyond parfor
 - labIndex, Composite, and Broadcast&Receive
 - Practice using PBS
CLI: Run on single node with PCT

- Next, we’ll take the same three steps using command line
 - Remember, we are still running interactively on a compute node
- Start MATLAB without GUI

```
$ source /usr/usc/matlab/R2016a/setup.sh
$ matlab --nodesktop --nodisplay
```

MATLAB is selecting SOFTWARE OPENGL rendering.

```
< M A T L A B (R) >
Copyright 1984-2015 The MathWorks, Inc.
R2015a (8.5.0.197613) 64-bit (glnxa64)
February 12, 2015
```

To get started, type one of these: helpwin, helpdesk, or demo.
For product information, visit www.mathworks.com.

```
   Academic License
```

1. Set cluster profile (CLI)

- Create cluster profile for single-node parallel job
 - Tells PCT which PBS resources are available

```
>> MPCTprofile = parallel.cluster.Local
>> MPCTprofile.JobStorageLocation = 
    '/home/rcf-proj/{project}/{user}/{matlab_dir}'
>> MPCTprofile.NumWorkers = 8
```
Set cluster profile

- You can save your profile and reuse it

  ```matlab
  >> MPCTprofile.saveAsProfile('SingleNodeProfile')
  • This profile is saved in .matlab, and is re-usable
  • If you have already created this, next time you run, instead of all the former commands, just say:

  ```matlab
 >> MPCTprofile = parcluster('SingleNodeProfile')
  ```

- At this point we can either
  • Run EstimatePi.m script interactively in the foreground or run it in the background as a batch job

2. Set parallel pool and execute program

%Start parpool (specify cluster profile and workers)
>> parpool(MPCTprofile,7)
    Starting parpool ...connected to 7 workers.
%Run program
>> estimatePi
ans =
    Elapsed time = ........
%Check values
>> pi
    pi =
        3.1416
%Always clean up
>> delete(gcp('nocreate'))
Outline

- Introduction
  - Prerequisites, setup workspace and launch MATLAB
  - Introduction to parallel MATLAB
- Run MATLAB on single node w/ Parallel Computing Toolbox (PCT)
  - Using graphical user interface (GUI)
  - Using command line interface (CLI)
  - Using CLI with batch parallel job execution
- Run MATLAB on multiple nodes w/ Distributed Computing Server (DCS)
  - Using command line interface (CLI)
- Beyond parfor
  - labIndex, Composite, and Broadcast&Receive
  - Practice using PBS

MATLAB batch parallel job execution

- You can spawn jobs from within MATLAB
  - A batch job will run in the background
- MATLAB has its own scheduler for batch jobs
  - For example, if you had two independent tasks
- Run a batch job using PCT

```
>> job = batch(MPCTprofile, 'EstimatePi', 'pool', 7)
```
MATLAB batch parallel job execution

- To view job state
  ```
 >> job %view state of job
  ```

- To view the results
  ```
 >> load(job)
  ```

- Type variable names to see results
  ```
 >> pi
 pi = 3.1416
 >> elapsedTime
 elapsedTime = 1.9440
  ```

Outline

- Introduction
  - Prerequisites, setup workspace and launch MATLAB
  - Introduction to parallel MATLAB

- Run MATLAB on single node w/ Parallel Computing Toolbox (PCT)
  - Using graphical user interface (GUI)
  - Using command line interface (CLI)
  - Using CLI with batch parallel job execution

- Run MATLAB on multiple nodes w/Distributed Computing Server (DCS)
  - Using command line interface (CLI)

- Beyond parfor
  - labIndex, Composite, and Broadcast&Receive
  - Practice using PBS
Run on multiple nodes (GUI)  
MATLAB’s Distributed Computing Server (MDCS)

- Request two nodes

```
qsub -l walltime=01:00:00 -l nodes=2:ppn=8 -l software=MPCT+1
-A workshop -l ‘advres=HPCWorkshop.xx’
```

- Open new window

```
$ ssh -X {user_id}:hpc-login3.usc.edu
$ ssh -X hpcxxxx
$ matlab
```

- There are three steps for MATLAB MDCS configuration
  1. Set cluster profile (MultiNodeProfile_GUI)
  
     *Setup resource template: Tell MATLAB how to pass resources to PBS*
  2. Set parallel pool preferences
  
     *Tell MATLAB which cluster profile and how many workers to use for this run*
  3. Start parallel pool and execute program

1. Set cluster profile

- Open Main Menu=>Environment=>Parallel=>Manage Cluster Profiles
- Choose Torque
- Rename to “MultiNodeProfile_GUI”
- Edit
Set resource template

- Set JobStorageLocation
- Set NumWorkers
- Set ResourceTemplate
  
  -l procs=^N^ -software=MDCS+^N^ -m abe -M {user_id}@usc.edu

2. Set parallel pool preferences

- Access Preferences panel from top tab or lower-left button
- Set “Default Cluster”
- Set “Preferred number of workers in pool”
  
  #workers = #cores – 1

- Close window
3. Start parallel pool

- Select “Start parallel pool”
  - Parallel bars will blink until ready
  - Select script (EstimatePi.m) and run

- How to check your multinode process?
  - $ myqueue
    - One job is our stdin job (interactive shell)
    - One job is matlab’s which has requested 15 cores (and received two nodes) and is waiting
    - You can ssh to any one of these nodes and run $ top

- Exit MATLAB

Outline

- Introduction
  - Prerequisites, setup workspace and launch MATLAB
  - Introduction to parallel MATLAB

- Run MATLAB on single node w/ Parallel Computing Toolbox (PCT)
  - Using graphical user interface (GUI)
  - Using command line interface (CLI)
  - Using CLI with batch parallel job execution

- Run MATLAB on multiple nodes w/ Distributed Computing Server (DCS)
  - Using command line interface (CLI)

- Beyond parfor
  - labIndex, Composite, and Broadcast&Receive
  - Practice using PBS
Run on multiple nodes (CLI)

- Next, we’ll take these steps using the command line
- Start MATLAB without GUI

```bash
$ source /usr/usc/matlab/R2016a/setup.sh
$ matlab -nodesktop -nodisplay
```

MATLAB is selecting SOFTWARE OPENGL rendering.

![MATLAB](https://www.mathworks.com/help/pdf_doc/matlab/)

To get started, type one of these: helpwin, helpdesk, or demo.
For product information, visit www.mathworks.com.

```
>> Academic License

Setting MDCS profiles

- Create cluster profile for MATLAB’s DCS
 - Tells MATLAB how to talk to multiple nodes
```

```
>> MDCSprofile = parallel.cluster.Torque
>> MDCSprofile.JobStorageLocation = '/home/rcf-proj/{project}/{user}/{matlab_dir}'
```

- Save profile, and reuse later
```
>> MDCSprofile.saveAsProfile('MultiNodeProfile')
>> MPCTprofile = parcluster('MultiNodeProfile')
```
Setting MDCS profiles

- **Set Resource Template**
  - MATLAB also needs to know
  - How to log into compute nodes (ssh)
  - How to transfer files (scp)

```matlab
>> MDCSprofile.RshCommand='ssh
>> MDCSprofile.RcpCommand='scp'
```

- **Note:** There is no walltime specified
- **N** will be determined by us later

```matlab
>> MDCSprofile.ResourceTemplate=' -l procs="N" -l software=MDCS+"N" -m abe -M {user_id}@usc.edu'
```

- **Save your profile**

```matlab
>> MDCSprofile.saveAsProfile('MultiNodeProfile')
```
Using MDCS profiles

- Using your previously saved profile
  >> MDCSprofile = parcluster('MultiNodeProfile')

- Set maximum walltime
  >> MDCSprofile.SubmitArguments='-- 1 walltime=1:00:00'

- If you have a walltime you use often you can save and restore the profile
  >> MDCSprofile.saveAsProfile('OneHr_MultiNodeProfile')
  >> MPCTprofile = parcluster('OneHr_MultiNodeProfile')

Launching an MDCS job

- How many cores to request?
  - Most nodes in main queue have either 8 or 16 cores per node so multiples of 8 (8, 16, 24, 32...) or 16 (16, 32, 48...) are best
  - Makes it easier for job scheduler to find your resources, job starts sooner

- Launch a batch job
  >> job = batch(MDCSprofile,'EstimatePi', 'parpool', 15)

  - 16 cores, 1 for MATLAB plus 15 workers
  - MATLAB handles qsub details
  - NOTE: You can close your MATLAB session and interactive session at this point if you are saving results to file (but don’t do for tutorial)
  - Check $myqueue
### Multinode job: Checking status

```matlab
>> jobs=findJob(MDCSprofile)
```

```matlab
jobs=

8x1 Job array:

<table>
<thead>
<tr>
<th>ID</th>
<th>Type</th>
<th>State</th>
<th>FinishTime</th>
<th>Username</th>
<th>Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>running</td>
<td>Apr 18 11:01:49</td>
<td>csul 1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>finished</td>
<td>Apr 22 15:05:07</td>
<td>csul 7</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>finished</td>
<td>May 27 10:04:36</td>
<td>csul 3</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>finished</td>
<td>May 27 10:04:27</td>
<td>csul 32</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>finished</td>
<td>May 27 10:35:18</td>
<td>csul 32</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>finished</td>
<td>May 27 10:36:23</td>
<td>csul 32</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>finished</td>
<td>May 27 11:39:00</td>
<td>csul 32</td>
<td>12</td>
</tr>
</tbody>
</table>
```

### Multinode job: Retrieving results

```matlab
>> load(jobs(12))
```

```matlab
>> pi
pi =
 3.1416
```

```matlab
>> elapsedTime
elapsedTime =
 42.3374"
Outline

- Introduction
 - Prerequisites, setup workspace and launch MATLAB
 - Introduction to parallel MATLAB
- Run MATLAB on single node w/ Parallel Computing Toolbox (PCT)
 - Using graphical user interface (GUI)
 - Using command line interface (CLI)
 - Using CLI with batch parallel job execution
- Run MATLAB on multiple nodes w/ Distributed Computing Server (DCS)
 - Using command line interface (CLI)
- Beyond parfor
 - labIndex, Composite, and Broadcast&Receive
 - Practice using PBS

Practice using PBS

- There are practice scripts in /home/rcf-proj/workshop/matlab
 - Copy them to your matlab workshop directory
- Normally you would do the following
 1. Create a PBS script
 2. Submit a batch job from head node (e.g., `qsub submit.pbs`)
- You can try this now
 - Exit compute node (you should be on head node)
 - The scripts `submit.pbs` and `jobScript.m` show how to submit EstimatePi to the queue
Submit EstimatePi.m to queue

```bash
#!/bin/bash
#PBS -l nodes=1:ppn=1
# Launch matlab, workers will run in another job
#PBS -N matlab_launcher
source /usr/usc/matlab/R2016a/setup.sh
cd $PBS_O_WORKDIR
matlab -nodisplay -nosplash -nodesktop -r "jobScript"
```

```matlab
parpool('MultiNodeProfile_GUI',7)
% Increase workers as desired
% Replace with other examples
EstimatePi
% Increase size of problem as desired
pi elapsedTime
delete(gcp('nocreate'))
```

Beyond parfor

- parfor is the most basic way that MATLAB can parallelize your code
- Sometimes you'll need to have more control over what gets run on each worker
- Here are some examples to give you an idea of the capabilities of MATLAB’s Parallel Computing Toolbox and Distributed Computing Server
Beyond parfor

- labIndex
- Composite
- Broadcast & receive
- Look at the scripts you copied from /home/rcf-proj/workshop/matlab


```
% Demo task submission
% This script show you how to create job and task
% and submit them

% load the default cluster profile
C = parcluster;

% You can specify a different profile if you like
% C = parcluster('MultiNodeProfile_CLI')

% create submit arguments if you want to run this
% as a multinode job
% C.SubmitArguments='-l walltime=00:30:00 -E';

% create job
j = c.createjob;
a = rand(4);

% create two tasks
j.createTask(@sin,1,{a});
j.createTask(@cos,1,{a});

% run both tasks at the same time
j.submit;

% wait till job finish before fetching results
j.wait('finished');
pause(20);

% fetch output
result = j.fetchOutputs;
f = [result{:}];

% save data
save('submitTasks.out','f','-ascii');
```
labIndex.m

% Demo of parpool, Composite and labindex
% This script demos parpool and Composite, labindex
% it must be run as a multi-node job
% load the default cluster profile
%c = parcluster;

% You can specify a different profile if you like
c = parcluster('MultNodeProfile_CLI');

% create submit arguments
c.SubmitArguments=-l walltime=00:30:00 -E ;

% request 3 workers
c.parpool(3)

% compute process
a = Composite();
spmd
temp=labindex*ones(10);
a = temp*temp;
end

% save worker results
d=[a(:)];
Save('labindex.out', 'd', '-ascii');

% cleanup
delete(gcp('nocreate'))

broadcastReceive.m

% Demo labindex and mpi communication
% demo labindex and mpi communication, send, receive, broadcast
% This script must be run as a multi-node job

% load the default cluster profile
%c = parcluster;

% You can specify a different profile if you like
c = parcluster('DefaultMultNodeProfile')

% create submit arguments
c.SubmitArguments=-l walltime=00:30:00 -E ;
c.parpool(3)

% Set up a 'single program, multiple data' environment
spmd
switch labindex
% If labindex is 1, 1:5 to screen
% If labindex is 2, receive data from 1 on what to print to screen
% otherwise print 11:15 to screen
 case 1
 A=1:5;
 labSend(A,2,199); % send to worker 2
 case 2
 A = labReceive(1,199); % receive from worker 1
 otherwise
 A = 11:15; % create his own
end
end
A{;}

1/3

2/3
broadcastReceive.m

spmd
% if labindex is 1, print 6:10 to screen
% otherwise receive data from 1 on what to
print to screen
if labindex == 1
A=labBroadcast(1,6:10); % broadcast to all
else
A=labBroadcast(1); %receive broadcast
end
end
A{:}

delete(gcp('nocreate'))

End Notes

- MATLAB documentation
 http://www.mathworks.com/help/

- MATLAB licenses
 - To view availability, type on command line
 /auto/usc/matlab/R2016a/etc/glnxa64/lnutil lmunstat -a -c 27000@hpc-licenses.usc.edu | grep MATLAB
 - To view graphically
 https://hpc-monitoring.usc.edu/dashboards/queues.html